

1

Bibliotekarstudentens nettleksikon om litteratur og medier

Av Helge Ridderstrøm (førsteamanuensis ved OsloMet – storbyuniversitetet)

Sist oppdatert 04.03.24

Om leksikonet: https://www.litteraturogmedieleksikon.no/gallery/om_leksikonet.pdf

Tekstgenerator

En mekanisme som skaper/genererer tekster. Vanligvis gjelder det en datamaskin
som har installert spesiell programvare for formålet, som kan være å drive
eksperimentell tekstproduksjon. Et sett av språklige regler kodes inn i et
dataprogram slik at programmet med en viss grad av autonomi (selvstendighet)
frambringer svært forskjellige tekster basert på språkreglene. Det er altså
maskinell-kombinatorisk tekstproduksjon. Det etableres en slags abstrakt modell
som så ved bruk av programvaren fylles med konkrete tekster (Balpe og Magné
1991 s. 27).

“The most commonly cited definition of “generative art” is from Philip Galanter:
“ ‘Generative art’ is an art practice where the artist creates a process, such as a set
of natural language rules, a computer program, a machine, or other mechanism,
which is then set into motion with some degree of autonomy […]” […] underlying
the generation process are rules, decided by the originator and effected by the
computer, or input from the user.” (Sarah Cook i http://net.art-generator.com/
publications_cook_en.html; lesedato 06.12.19)

Dette er tre lett forståelige setninger: “Bjørnen spiste fem sauer i bondens skog.”
“Spekkhoggere puster med lunger og er en delfinart som tilhører tannhvalene.”
“Petter slo Kari med en sykkelpumpe.” De følgende er tre andre setninger som kan
dannes med de samme ordene som i de tre setningene: “Kari spiste en sykkelpumpe
og tilhører tannhvalene.” “Spekkhoggere slo Petter og Kari og hver delfinart med
en sykkelpumpe.” “En skog med sauer spiste bjørnen.” Hvis ikke kun ordene, men
bokstavene fra de tre første setningene kan kombineres, kan det oppstå en enorm
mengde setninger, f.eks. “Sykkelbondens delfinsau hogger spekk.” Det skal ikke
mange ord eller bokstaver til før det blir et uoverskuelig antall kombinasjons-
muligheter. Slik fungerer også et vanlig alfabet: under 30 bokstaver kan brukes til å
lage millioner av forskjellige ord.

Gjennom å bruke en datamaskin til å kombinere ord, setninger og verselinjer, kan
tekstmengden raskt overskride det et menneske er i stand til å lese – teksten kan
vokse inn i uendeligheten (Clément 2002). Hvis programvaren stadig endrer
tekstmassen, kan ikke leseren være sikker på å kunne lese den samme teksten på
nytt, og heller ikke på om andre har lest de samme tekstene (Jean-Pierre Balpe i

2

https://articlesdejpbalpe.blogspot.com/2013/07/regles-contraintes-programmes.
html; lesedato 21.08.19).

Tekster produsert av tekstgeneratorer må leses på en annen måte enn tekster som er
skapt langsomt av en vanlig skrivende forfatter med intensjoner. Den kolossale
mengden tekster som kan genereres i løpet av sekunder, gjør ferdiglesing umulig,
og gjør lesingen til en slags meta-lesing, altså lesing av fenomenet lesing. Tekstene
har ikke verdi i seg selv, men er uuttømmelige, midlertidige og fungerer som et
slags vitner om litteraturens uendelige, produktive muligheter. På denne måten
overskrider de begrensningene og reglene i tekstgeneratoren (Jean-Pierre Balpe i
https://articlesdejpbalpe.blogspot. com/2013/07/regles-contraintes-programmes.
html; lesedato 21.08.19).

“The goal for the author of a combinatory work is not to produce the best literary
expression of an idea, but the most interesting range of possibilities the literary
system can produce.” (Rettberg 2019 s. 43)

Algoritmer (logisk-matematiske regler) brukes til å skape nye tekster, i en uendelig
tekstproduksjon (Clément 2002). Teksten “selvmultipliserer seg” via elektrisitet og
programvare. Tekstgenerering engasjerer ikke bare programmerere, men også
lingvister, psykologer og forskere på kunstig intelligens (Jacques Anis i https://
www.jstor.org/stable/i40079126; lesedato 14.02.19) Målet er ofte å lage setninger
som er syntaktisk og semantisk akseptable, dvs. på et visst nivå forståelige
(Archibald, Audet m.fl. 2011 s. 70).

Dataprogrammet kan være kodet til å produsere semantisk og syntaktisk relativt
forståelige setninger. Men de algoritme-skapte tekstene frambringes ikke for å bli
“litteratur”, dvs. noe estetisk formfullendt eller universelt gyldig. De er flyktige,
forgjengelige representasjoner. Det skapes en “variasjonens litteratur” der det
performative er hovedsaken (Balpe og Magné 1991 s. 20). Tekstgeneratorer bidrar
til å problematisere hva tekster og litteratur er, og hvilken rolle forfatteren og
leseren spiller (Archibald, Audet m.fl. 2011). Tekster blir “avhumanisert”, altså
løsrevet fra en forfatters unike stemme og autentiske opplevelse. Forfatteren er ikke
lenger en nødvendig instans, heller ikke menneskets inspirasjon eller intensjon.
Tekstene skapes snarere gjennom “ingeniørarbeid”. Tekstgeneratoren skal gi
mening gjennom en maksimering av semantikkens uendelige muligheter, men også
gjennom avkontekstualisering av det verbale uttrykket. Tekstgeneratorers utopi
(eller dystopi) er en tekstlig “uavgrenset avgrunn”, en uendelig tekst eller bok
(Clément 2002).

“One of the most frequent criticisms of poetry and story generators is that they
produce nonsensical or even unreadable output, and this may well be the case for
many text-generation systems. This does not necessarily mean that they are lesser
works of art – the author may be striving for some other effect than producing

3

compelling poetry or prose, such as exercising a particular constraint or mode of
conceptual writing.” (Rettberg 2019 s. 42)

“Forfatteren” av tekstene i tekstgeneratoren er en “meta-forfatter” som bryter
forbindelsen mellom skrift og subjektivitet, og skaper stor avstand mellom disse
instansene (Jean-Pierre Balpe i http://articlesdejpbalpe.blogspot.com/2013/06/meta-
auteur.html; lesedato 06.09.19). Det følges et vi-prinsipp, ikke et jeg-prinsipp.
Meta-forfatteren skaper en maskin der målet er at maskinen produserer (en slags)
mening, ikke kaos. “What is important in such a situation is not the product itself
but the process which leads to the product.” (Jean-Pierre Balpe sitert fra
http://nt2.uqam.ca/ fr/dossiers-thematiques/lart-generatif; lesedato 25.02.20)

“For the poet to be able to claim the poems created by bots as her own, she must
accept that the technology is a part of the art making process and a part of the poet.
It can be very hard to guess whether a poem is computer generated or made by real,
human soul. […] It might just be Roland Barthes’s dream come true; the author is
finally dead and only the poem remains.” (Monsen 2016)

Tekstgeneratorer skaper ofte en type tekster som viser fram sine kreative logikker,
men der meningen er eller kan virke ugjennomtrengelig. Språket peker tilbake på
seg selv. Vi blir mer oppmerksomme på mulighetene for variasjon, mangfold og
forandringer i språket. Men tekstene bør på et eller annet vis være akseptable, dvs.
ikke fullstendig kaotiske. Bak noen tekstgenerator-prosjekter ligger en drøm om en
uendelig (eventuelt poetisk) produktivitet. Både det tilfeldige og algoritmer,
uberegnelighet og matematikk, anarkisme og kontroll kobles (Clément 2002). Ut
fra den spesifikke algoritmen som er brukt, kan tekstene som blir til, f.eks. tilhøre
en bestemt stilretning eller sjanger. Datagenererte tekster kan framstå som pastisjer,
dvs. etterligne gjenkjennelige tekster, ved at vokabular og språklig stil får tekstene
til å ligne på tekster av kjente forfattere (Clément 2002). Eller tekstene kan
oppfattes som parodier, altså latterliggjørende versjoner.

Algoritmer kan frambringe mange tilfeldigheter i bokstav- og/eller ord-
sammensetninger. “Generative literature tries to be on the side of the effusive
superficiality of show. It wants to reconcile the literary activity with that of play
and game: to separate literature from the sphere of reverential and deadly
seriousness in which the whole classical tradition locks it.” (Jean-Pierre Balpe i
http://www.dichtung-digital.de/2005/1/Balpe/; lesedato 21.08.19) Resultatet kan bli
nonsenstekster, som er relativt meningsløse og eventuelt komiske.

“The text, no longer regarded as “literary”, now has to annihilate all reverence
because a generative text can always be substituted by another one. Hence it is not
the singular display which is at the heart of generative literature but rather the
movement, the series of ever-changing displays of text. The computer culture is
close to spreading, to dispersion.” (Jean-Pierre Balpe i http://www.dichtung-
digital.de/2005/1/Balpe/; lesedato 21.08.19)

4

“Generative literature, defined as the production of continuously changing literary
texts by means of a specific dictionary, some set of rules and the use of algorithms,
is a very specific form of digital literature which is completely changing most of
the concepts of classical literature. Texts being produced by a computer and not
written by an author, require indeed a very special way of engrammation and, in
consequence, also point to a specific way of reading particularly concerning all the
aspects of the literary time. […] I call “generative literature” a literature where the
texts are produced through a computer by means of a set of formal rules, the use of
any kind of algorithm, specific dictionaries and eventually knowledge
representations. That means a literature of which the author does not write the final
texts but which only works at the level of the high rank components such as:
conceptual models, knowledge rules, dictionary entries and rhetoric definitions. A
text without an author generally seems to be out of question. Such a designation
seems to describe an impossible literature because, despite the fact we generally
assume that there is a very strong link between a text and its author, in this case the
author is separated from the text. In generative literature, there certainly also is an
author but one who has not really written the text which is being presented to a
reader, his function is not the one we usually assign to an author. The difference is:
this author is something like a meta-author trying to define what literature is for
him and how his literary conception can be formally described. The tools of
engrammation he uses are totally different. But at the end of the process there are
also texts.” (Jean-Pierre Balpe i http://articlesdejpbalpe.blogspot.com/2013/06/
principles-and-processes-of-generative.html; lesedato 24.10.19)

Briten Alan Turing, som fra 1930- til 50-tallet hadde stor betydning som utvikler av
teorier om datamaskiner og med sitt arbeid innen informatikk, kryptografi og
kunstig intelligens, planla å lage et dataprogram etter modell av surrealistenes
“cadavres exquis” (“herlig kadaver”). Det er en slags lek der en tegning ble skapt
ved at person etter person tegnet en del av en helhet uten å vite hva helheten var.
Inspirert av Turings ideer lagde hans kollega Christopher Strachey i 1951 et
program som kunne skrive kjærlighetsbrev. Dette regnes som verdens første
tekstgenerator (Archibald, Audet m.fl. 2011 s. 70), “the first known example being
Christopher Strachey’s 1952 love letter generator for the Manchester Mark I
computer” (Noah Wardrup-Fruin i https://games.soe.ucsc.edu/sites/default/files/
nwf-BC3-readingDigitalLiterature.pdf; lesedato 21.08.19). En annen pioner var den
tyske informatikeren Theo Lutz, som i et tidsskrift i 1959 publiserte dikt kalt
“stochastiske tekster” som var lagd av et dataprogram som brukte de hundre første
ordene i Franz Kafkas roman Slottet (1926) (Clément 2002).

Den såkalte Turing-testen gjelder kunstig intelligens og går ut på å la et menneske
som kommuniserer med en datamaskin tro at det kommuniserer med et annet
menneske. Testen er bestått hvis en datamaskin kan kommunisere like effektivt og
fleksibelt som et menneske. Franskmannen Jean-Pierre Balpe publiserte en rekke
datagenererte tekster i noen franske tidsskrifter uten å forklare at de var skapt av et

5

dataprogram og dermed uten at en person skrev bokstavene. Noen ganger blandet
Balpe disse tekstene med vanlige, menneskeskapte tekster (skrevet på tastatur).
Poenget var at det skulle være umulig for leserne å skille mellom de to måtene
tekstene var produsert på (Jean Clément i Archibald, Audet m.fl. 2011 s. 70-72).

Amerikaneren Robert Gaskins skapte en tekstgenerator som produserte haikuer
(Balpe og Magné 1991 s. 19). “I wrote a program to generate haiku, which was
embedded in the idle loop of a campus CDC6400 and became the most prolific
poet up till that date, with a selection published in an anthology of computer poetry
edited by Richard W. Bailey (Computer Poems, 1973).” (Ganskins i https://www.
robertgaskins.com/; lesedato 25.02.20)

“[T]he new media artist D. Fox Harrell has created GRIOT, a computational
narrative program named after West African storytellers that is designed to produce
haibuns, or prose haikus. These short linguistic snapshots are generated from users’
inputs that are then run through a combinatory algorithm” (Piper 2012 s. 138).

Amerikaneren Charles Hartman stod bak Prose (1996). “At first, computer poetry
sounds like an oxymoron; computer poetry must be a simulation – “virtual” – and
for that reason there can be no there, meaning-wise. Yet, Hartman and his own
machines made of words, that is, his inventive poetry programs, produce some
remarkably “fruitful linguistic material” […] A poet and ace programmer, Hartman
has been “interested in the complicated boundary between what computers can do
with language and what they can’t.” He believes that they “can do something
worthwhile in the way of poetry” […] he doesn’t want to delegate poetry to
machines, only to use machines to stimulate our own thinking about language and
meaning. […] Hartman’s work has genuine philosophical implications, for he
addresses the problematic of the arbitrary and the random, chance and necessity,
and the uncanny sound frequencies underlying writing itself as represented by the
frequencies of letters. As letter sequences lengthen, a computer mouths oracular
sounding utterances chosen from letters scrambled from input texts: “On cigar.
Light hand. That box fixed. Cup supposing/ white with the cup supposing white
inside that” reads part of one Hartman/computer collaboration. Nonsense of course,
but Delphic nonsense.” (Alec Marsh i https://www.amazon.com/Virtual-Muse-
Experiments-Computer-Wesleyan/dp/0819522392; lesedato 06.12.19)

Kunstneren John Morris publiserte i 1967 artikkelen “How To Write Poems With
A Computer”, der han blant annet skrev: “The computer must pay attention to
rhythm and sound, and must somehow link texture with semantics to make each
one complement the other – all without becoming obnoxiously evident in its task. It
must grow banal when speaking of banalities, cool or crisp for the displeased
mistress, hot and languid for a summer shower. At times it must play with the sheer
sounds of words” (Whitman’s ‘Weapons shapely, naked, wan’)”. Morris
programmerte tekster til å bli haikuer, skapt fra en liste med ord som programmet
plukket tilfeldig fra, “on the fly”. Tre av haikuene fra prosjektet ble slik:

6

“Frogling, listen, waters
Insatiable, listen,
The still, scarecrow dusk.”

“Listen: I dreamed, was slain.
Up, battles! Echo these dusk
Battles! Glittering …”

“Fleas spring far, scarecrow,
Oh scarecrow, scarecrow: well, far,
Scarecrow, oh scarecrow.”

“Many people generate poetry using computers, from artists exploring the effects
of algorithms on language, to Internet hobbyists, to computer scientists interested in
making artificial intelligence creative. Despite these varied authors, and lack of
communication between communities, the techniques used to generate such poetry
can be boiled down into a few simple categories with well-defined relationships.
We define these categories as follows. In mere generation, a computer produces
text based on a random or deterministic algorithm. All generative poetry systems
we have come across use some form of mere generation. In the remaining two
categories, the results of mere generation are modified and enhanced. This occurs
either through interaction with a human (Human Enhancement), or through the use
of optimization techniques and/or knowledge bases (Computer Enhancement). The
results of mere generation can appear nonsensical, though this is not always a bad
thing from an artistic perspective. By bringing in knowledge about words and the
world, and by setting artistic goals, both human and computer enhancement drive
generative poetry towards coherence and artistic style.” (Carolyn Lamb m.fl. i
https://archive.bridgesmathart.org/2016/bridges2016-195.pdf; lesedato 25.02.20)

I 1960 gikk en gruppe franskmenn sammen om å danne et “Verksted for potensiell
litteratur” (“Ouvroir de littérature potentielle”, forkortet Oulipo). Gruppa bestod av
forfattere, matematikere og akademikere. En av forfatterne var den surrealistisk
inspirerte Raymond Queneau. Hans “diktsamling” Hundre tusen milliarder dikt
(1961) er en bok med sonetter, der hver eneste verselinje kunne blas om separat.
Boka bestod altså av en stor mengde strimler med verselinjer, innbundet som en
bok, og med milliader av kombinasjonsmuligheter. Leseren kunne gjennom å bla i
strimlene lager hundre tusen milliader sonetter. Dette kombinasjonsprinsippet ble
senere digitalisert av andre enn Queneau, for eksempel fantes det i 1999 en svensk
versjon på Internett (på adressen http://www.ling.umu.se/~heldner/queneau2/
dikter.htm). Andre har blitt inspirert av samme prinsipp: “Based on the Queneau
model, a generation of 4,000 poems by [Georges] Perec, produced with drawings
from Fabrizio Clerici which also obey the combinatorial rule.” (http://www.altx.
com/ebr/ebr10/10sus.htm; lesedato 12.09.19)

7

“By inventing procedures for generating texts, the Oulipo separated the formal
aspects of writing from its content so that procedures for making texts could be
carried out independently of those who invent the procedures. […] When the
Oulipo formed in 1960, one of the first things they discussed was using computers
to read and write literature. They communicated regularly with Dmitri
Starynkevitch, a computer programmer who helped develop the IBM SEA CAB
500 computer. The relatively small size and low cost of the SEA CAB 500 along
with its high-level programming language PAF (Programmation Automatique des
Formules) provided the Oulipo with a precursor to the personal computer […].
Starynkevitch used the machine to create an imaginary telephone directory
composed of realistic names and numbers generated by his computer […] In 1981
the Oulipo published Atlas de littérature potentielle where they described some of
the computer applications they had devised for reading literature. Their early
experiments included machine-assisted readings of Queneau’s Cent mille milliards
de poèmes. In this deceptively small book, Queneau had composed ten sonnets in
such a way that the reader could select the first line of any sonnet, the second line
of any sonnet, etc., and generate one of 1014 possible sonnets. The book itself
contains the mechanism for generating poems: each line is printed on a strip of
paper, and the reader can select strips from the original sonnets to generate a
potential sonnet (Queneau 1961). Dimitri Starynkevitch had programmed his SEA
CAB 500 machine to compose sonnets from Queneau’s Cent mille milliards de
poèmes. In 1975 the Atelier de Recherches et Techniques Avancées, or ARTA,
wrote a computer program that produced instantiations of the Cent mille milliards
de poèmes as a function of a user’s name and the time it took him or her to type it.
[…] Paul Braffort and Jacques Roubaud, two Oulipians with backgrounds in
mathematics and computer science, formed the Atelier de Littérature Assistée par la
Mathématique et les Ordinateurs (ALAMO) in 1980 to explore computer-assisted
writing. Following the model of Queneau’s Cent mille milliards de poèmes, the
ALAMO wrote computer programs to produce texts according to the rules of
various genres, such as poems and aphorisms.” (Mark Wolff i http://www.digital
humanities.org/dhq/vol/001/1/000005/000005.html; lesedato 25.02.20)

“Braffort explained that combinatorial methods for generating texts with computers
fall into two categories. The first category, applicational methods, involves
templates for arranging words according to their grammatical function. One
particularly amusing application generates what the ALAMO calls
“Rimbaudelaires”, poems based on the structure of Rimbaud’s poem “Le Dormeur
du Val” and composed of vocabulary from Baudelaire’s works […] Another
example is Marcel Bénabou’s method for generating aphorisms (Bénabou 1980).
Braffort developed a program that operationalized Bénabou’s algorithm by
abstracting the structures common to adages and substituting new terms into the
structures […] The potential of these computer programs resides in the way
fragments of words and verses are recombined according to a set of well-defined
rules. Poetic forms can thus be understood as algorithms for creating meaning with
language. The ALAMO devised ways to formalize poetics in order for a computer

8

to generate structured texts which may or may not make sense. The actual poems
produced by the programs are derivatives of the way computers can be harnessed to
explore language. Reading these computer-generated texts can be amusing because
of unexpected or incongruous combinations of words that oddly make sense.
Despite their uncanny effects, however, texts produced through applicational
methods still bear the mark of the inventor who not only determines the templates
into which syntagma are inserted but also the stock of words and phrases from
which the computer program draws.” (Mark Wolff i http://www.digitalhumanities.
org/dhq/vol/001/1/000005/000005.html; lesedato 25.02.20)

En hvilken som helst tekst “is only a temporary specimen of an infinite family of
virtual texts. In concrete terms, this means that any point of the generative axis is
the theoretical point of an infinity of texts […] What generative literature wants to
affirm today is the vital and infinite power of the “literary” communication as a
dynamic diffraction of relations, where the always-different text manifests its
identities only through the infinite repetitions of its generation of the same, through
its infinite changes more than through its halts. What this process assumes is the
fecundating power of language as it enriches itself within all the restraining
particularities of any given context. […] Generative literature wants first of all to be
something like a “literarization” of technology, because what it demonstrates first
and foremost in its multiplicities and its variations, are its potentials and its
changing states. […] Generative literature’s only pretension is to enrich the text’s
potentialities. It forsakes the fiction of fiction to be only interested in the subjective
production and formalization of meaning. In that sense, it only exists through
infinite literary production.” (Jean-Pierre Balpe i http://www.dichtung-digital.de/
2005/1/Balpe/; lesedato 21.08.19)

Østerrikeren Jörg Piringers “text-performance tool” Nam Shub (2006) “is a text
processor, text generator and performance system. It is designed as a tool for both
creators and performers of text and language oriented arts. […] functions to remove
vowels or consonants, change the order of letters, split words into syllables, random
operations on a word and letter level, complex substitution, text synthesis and tools
for displaying text. Additionally all these functions can be combined and chained
through a powerful scripting language and are therefore extensible. […] The
discussed program and it’s concepts are of course strongly influenced by the works
and ideas of literary modernist avant-garde movements like Dadaism Surrealism,
Lettrism, Oulipo, Wiener Gruppe and the Beat-poet’s use of the Cut-Up technique.
These movements and groups tried to extend the field of literature through the
introduction of chance or in contrast through the implementation of strict rules for
the generation of texts. […] Although Nam Shub is inspired by these early attempts
it focuses on computer specific aspects of electronic poetry: dynamic and real time
generation and manipulation of text.” (Piringer 2006)

“William Chamberlain and Thomas Etter’s Racter is one such notable system, as it
resulted in what may have been “The First Book Ever Written by a Computer” as

9

claimed on the cover of The Policeman’s Beard Is Half-Constructed (1984). In his
introduction to the book, Chamberlain described the abilities of Racter. It
“conjugates both regular and irregular verbs, prints the singular and the plural of
both regular and irregular nouns, remembers the gender of nouns, and can assign
variable status to randomly chosen ‘things.’ These things can be individual words,
clause or sentence, forms, paragraph structures, indeed whole story forms.” The
texts published in The Policeman’s Beard Is Half-Constructed tend toward the
absurd, but they are largely coherent and more polished than many examples of
generated text. Some commentators believed that the texts for the book were
heavily edited. Regardless of the level of human input into the process or extent of
editorial post-processing, the resulting texts often read as competent prose poetry,
as in this example:

“A crow is a bird, an eagle is a bird, a dove is a bird. They all fly in the night and in
the day. They fly when the sky is red and when the heaven is blue. They fly
through the atmosphere. We cannot fly. We are not like a crow or an eagle or a
dove. We are not birds. But we can dream about them. You can.”

The book is also notable for its beautiful surrealist-style collage illustrations by
Joan Hall, and it was also printed with a number of the poems angled diagonally or
scattered across the page, reinforcing connections to historical literary avant-garde
traditions.” (Rettberg 2019 s. 39-40)

“Mark V Shaney was created by Bruce Ellis and Rob Pike in 1984 as a text
generator for a fake Usenet personality. They implemented a basic Markov chain
analyser and resynthesizer to generate text out of found texts. It was a very simple
program without any possibility to control the results but through the access to a
large corpus of text it could fool other Usenet users into thinking that those strange
postings were produced by a real person. Markov chains as a text generating tool
have since been widely used in text processing computer programs […] Andrew C.
Bulhak follows a different approach with his Dada Engine and the Postmodernism
Generator: the software generates random sentences by using recursive grammars.
Depending on the structure and the encoded dictionary of the grammar it can
produce for example nonsensical but grammatically correct philosophical essays
[…] Ray Kurzweil’s Cybernetic Poet [1999] offers the user more control over the
process of generating poems. It is in fact “disguised” as a poetic assistant that offers
advice such on how to continue the text the user is writing in a text-editor-like
interface. The program offers assistant “personalities” ranging from Blake to Yeats
each processing their own literary corpus to suggest alliterating words, rhymes,
possible next words or completing the rest of the line or even the rest of the poem.
The actual generation process is hidden behind a recommendation interface so it is
up to the user to follow the given advice or rather choose her own word or
sentence.” (Piringer 2006)

10

“Denne våren [2011] leverte Stian Hansen en hjemmeeksamen i filmvitenskap. Han
hadde verken deltatt på forelesninger eller lest store deler av pensum. I kronikken
skriver Hansen at han ved hjelp av fri fantasi, sitater fra It’s learning og The
Postmodernism Generator, en nettside som genererer essay bestående av tilfeldige
fagord, fikk karakteren C.” (https://www.adressa.no/student/article1681996.ece;
lesedato 10.12.18)

“An even more playful project is C. P. Bryan’s Cut ‘n’ Mix ULTRA [2002]: it
seems to be inspired by a mixing desk for audio signals. Four text tracks can be
mixed together while controlling the “loudness” of each track. Additionally text
effects can be applied such as randomly rearranging the resulting words, replacing
words with synonyms, swapping words with randomly selected words of the same
category and formatting the output to resemble song lyrics. The immediacy of
changes in parameters and the real-time application of text manipulating functions
are very similar to those in Nam Shub and follow the same idea of text generation
as a kind of “poetry sculpting”. Taylor Berg’s Darwin [2005] enables the user to
create poetry through a process that mimics genetic evolution. The user plays the
role of natural selection by defining the fitness for survival through acting
accordingly to his aesthetic preferences. Each time a user visits the project website
he is presented six different automatically generated poems. After reading each
poem he is asked to select the two he likes most and to enter their number into
input fields. After pressing a button the algorithm generates a new set of six poems
deduced from the two selected parent poems. Each new generation is recorded and
can be reproduced and refined through the same selection process by each visiting
user. This evolutionary mechanism can create very complex artistic results just by
user driven selection of randomly generated structures. Nam Shub offers a similar
feature for the algorithmic programming of new text-modifiying functions. Apart
from Jean-Pierre Balpe’s elaborate text generators one particular project caught my
interest as it used an aspect of human-computer-interaction that seems to be
perfectly relevant for electronic poetry but is rarely used. Labylogue [2001] (by
Jean-Pierre Balpe, Jean-Baptiste Barrière and Maurice Benayoun) was a networked
interactive installation in the form of a virtual labyrinth built out of text walls. The
users in three different cities could communicate by speaking into a microphone
and move with a joystick through the text corridors. Simultaneously a computer
equipped with a speech recognition software listened to the users’ voices and tried
to understand what they were talking about to generate new texts for the walls
accordingly.” (Piringer 2006)

“Nanette Wylde’s Storyland (2002), published in the Electronic Literature
Collection, Volume One (2006), produces short stories, six-paragraph fictions that
feature minimal interactions between three characters that read as minimalist
contemporary parables. Consider one output:

“In the not-too-distant past, a misogynist cried for your sins. The misogynist was
guilty.

11

Species dwindled.
The misogynist wrote a letter to a talk-show host. The talk-show host was also
guilty when no one was looking.
While their inner storms were brewing, a bank teller lit a candle. The bank teller
had a broken heart.
Money changed hands.
The bank teller was angered by the misogynist. The misogynist longed for the talk-
show host.”

While this story does not offer a lot of context, it does not come across as nonsense.
This might well be kind of vignette or parable of contemporary sociopolitical life.
It is not difficult to imagine that the misogynist is some kind of politician
embroiled in a scandal, who goes on a talk show in order to perform a public mea
culpa. The talk-show host meanwhile is just as corrupt as the politician. The bank
teller, watching from afar, is disillusioned and heartbroken by the state of affairs,
but nevertheless implicated in the same system that has produced the misogynist
and the talk-show host, if powerless to change anything. This sort of story, like the
output of many text generators, invites the reader’s involvement not by providing
an excess of detail but, instead, by providing the reader with a minimal sketch, with
a great deal of interpretative space left for the reader to fill in. As readers we tend to
have a desire to make sense of texts presented to us, minimal outlines such as this
can serve as provocations, engaging our imaginations with prompts to flesh out a
richer storyworld than actually denoted by the text that appears on the screen. […]
Each time it is reiterated, the program pulls randomly from those arrays and sets the
elements into place. For example, in the first sentence: [Time setting], a [stereotype
character A] [past tense action verb] for [object]. The [stereotype character A] [past
tense of a condition].” (Rettberg 2019 s. 41-42)

“Could a poetry generator produce poems of adequate quality to be published in
literary magazines? This, roughly, is the challenge that Jim Carpenter set for
himself in developing the Erica T. Carter Project, an ambitious poetry generator.
The project used corpuses and styles (analyzed by Carpenter as “tree adjoining
grammars”) from famous poets such as Emily Dickinson, Frank O’Hara, Sylvia
Plath, Gary Snyder, and Rachel Blau DuPlessis, and mixed their words and styles
together algorithmically to produce new poems. In addition to developing a
complex program, Carpenter pushed things a bit further, creating a virtual persona
for the generator, and had her submit poems to literary magazines, a number of
which were published. In 2004 Carpenter exhibited the generator and a collection
of its output at the Slought Foundation in Philadelphia as “Erica T. Carter, The
Collected Works” (Carpenter, 2004). In 2008, along with Stephen McLaughlin, Jim
Carpenter released Issue 1: Fall 2008, a 3,785-page work that was allegedly a
compilation of poems by more than 3,000 contemporary American poets. In reality,
Carpenter’s generator produced all of the poems. Carpenter’s project was both a
complex and accomplished poetry generator and a Dadaistic performance, which
thumbed its nose at the poetry establishment. Many of the poets listed as authors

12

were in fact not pleased to find their names attributed to published poems that they
had not written (Goldsmith, 2008).” (Rettberg 2019 s. 43)

“An example for an application that explicitly generates visual poetry is Poem
Generator [2009] by Amorvita. It creates colourful constellations on the screen by
either randomly choosing presets or by user supplied words and characters. The
text is arranged randomly but obviously limited by constraints that give the result
the appearance of concrete poetry like for example Eugen Gomringer’s work. […]
Eugenio Tisselli’s MIDIPoet [1999] is a software that allows the manipulation of
digital text and image in real-time.” (Piringer 2006)

Nick Montfort, Serge Bouchardon m.fl. lagde i 2008 verket The Two, som “could
be called a digital poem or a story generator. It produces three-line narratives. In
the first line of each stanza, two characters of unspecified gender are introduced.
The second line includes two pronouns and a verb phrase, stating specific genders
for the two characters but leaving the resolution of these pronouns up to the reader.
The last line offers a sort of conclusion and describes something about the two
characters. Because particular roles introduced in the first line (such as “the
babysitter” and “the police officer”) are stereotypically imagined as mapping to
particular genders, the story that is generated can pose a challenge to readers and
can expose their assumptions. Because languages differ in how easy it is to initally
omit mention of person’s gender, the translation of this piece can also be
challenging.” (https://elmcip.net/creative-work/two; lesedato 06.12.19)

“From short stories to writing 50,000 word novels, machines are churning out
words like never before. There are tons of examples available on the web where
developers have used machine learning to write pieces of text, and the results range
from the absurd to delightfully funny. Thanks to major advancements in the field of
Natural Language Processing (NLP), machines are able to understand the context
and spin up tales all by themselves. Examples of text generation include machines
writing entire chapters of popular novels like Game of Thrones and Harry Potter,
with varying degrees of success.” (Pranjal Srivastava i https://www.analyticsvid
hya.com/blog/2018/03/text-generation-using-python-nlp/; lesedato 13.12.18)

Simon Biggs’ The Great Wall of China (1998) er basert på en ufullendt tekst av
Franz Kafka kalt “Ved byggingen av den kinesiske mur”. Hele Kafkas tekst blir
ved bruk av en tekstgenerator (som inneholder en kompleks syntaks-funksjon)
omgjort til en enorm rekke av setnings-kombinasjoner. Nederst til venstre på
skjermen dukker det opp nøkkelord for hva som styrer setningsmiksen i hvert
tilfelle. I tillegg til massive tekster er det bilder på skjermen, og bildene skaper en
romvirkning som får multiteksten til å framtre som en slags mur. Teksten forandrer
seg på ulike måter hvis kursøren føres over denne “muren”, og man bare kan lese
skikkelig hvis kursøren står stille (Christiane Heibach i Simanowski 2001 s. 35-36).

13

Et spesielt tekstgeneratorprinsipp følges i Noah Wardrip-Fruin med fleres
programvare “The Impermanence Agent” (1999). Programvaren fungerer mens
brukeren surfer på Verdensveven og samler ord og komponenter fra de besøkte
nettsidene som så stables sammen til en fiktiv fortelling. Verbal tekst og bilder fra
surfingen integreres til en “sammenhengende” historie. Det oppstår en “estetisk
dokumentasjon” av brukerens søkespor i form av en helt personlig fortelling
(Christiane Heibach i Simanowski 2001 s. 38). Det er tilfeldigheter som avgjør
hvilke elementer fra de besøkte nettsidene som havner på bestemte steder i
fortellingen.

“In 1948, British children’s book author [Roald] Dahl published a short story called
‘The Great Automatic Grammatizator’ in which a machine writes such excellent
fiction that its creator soon dominates the field of publishing. In 1950, the
American novelist [Kurt] Vonnegut published a short story called ‘EPICAC’
featuring a fictional computer of the same name which wrote love poetry. […]
British computer scientist Christopher Strachey’s Love Letter generator [is] a
variable text programmed on the Manchester University Computer in 1952.
Wardrup-Fruin attributes to Strachey ‘the first experiment with digital literature
and digital art of any kind’ (Wardrip-Fruin, 2011: 302). […] Vonnegut’s fictional
EPICAC computer reappeared in his novel Player Piano (1952), in the same year
as Strachey’s Love Letter generator. It is well within the realm of possibility that
Strachey’s enigmatic choice of the love letter as a literary form through which to
test the random number facility of the Manchester University Computer was
inspired by a work of print literature.” (Carpenter 2017)

Epiphanies (2001) av Christophe Bruno er et eksempel på “Google Art”. Brukeren
skriver inn ord i et søkefelt, og søkemotoren Google finner deretter fragmenter av
setninger fra en rekke dokumenter med disse ordene, som så av Brunos
programvare blir satt sammen til en merkelig tekst. Emotepoem (2008) av Peter
Howard har sju tematiske parametre som brukeren kan kontrollere, der graden av
vold, erotikk, materialisme, skjønnhet, surrealisme, ro og intensitet kan justeres.
For hvert parameter finnes det spesielle ord i en databank som tekstene genereres
fra (Simon Brousseau i http://nt2.uqam.ca/fr/dossiers-thematiques/lart-generatif;
lesedato 06.12.19).

En “oceanic (as opposed to terrestrial) nature of digital textuality has been nicely
rendered in Nick Montfort and Stephanie Strickland’s Sea and Spar Between
(2010), which algorithmically combines the writings of Melville and Dickinson to
produce as many stanzas as there are fish in the sea (about 225 trillion). As you
pass over them with the cursor, the lines of verse writhe, wiggle, and shift like
marine life.” (Piper 2012 s. 164)

“Nick Montfort and Stephanie Strickland’s Sea and Spar Between (2010)
incorporates fragments from the sparse poems of Emily Dickinson (1831-1886) and
dense prose from Herman Melville’s novel Moby Dick (1851). The spaciousness of

14

Dickinson’s dashes – ‘you–too–’ – merges with the oceanic churning of Melville’s
prose – ‘leagueless sing and steep’ – in stanzas assembled from words common to
both and unique to each. These loosely coupled language systems create a vast
verse-scape within the web browser window, chartable by longitude and latitude
displayed at the bottom of the screen, and navigable by keystroke, mouse-click, or
scroll wheel. Long-time collaborators, Montfort and Strickland interject human-
readable critical commentary into their computer-readable source code, offering
readers a number of ways into the text and inviting other authors to adapt and
modify their work. Taking up this call, in 2013, Mark Sample adapted the source
code of Sea and Spar Between to create a new work, House of Leaves of Grass,
based on the combined corpus of Mark Z Danielewski’s novel House of Leaves
(2000) and Walt Whitman’s poetry collection Leaves of Grass (1891-1892). The
hybrid corpora of both these examples combine and thereby dissolve formal
distinctions between works of poetry and prose. Both Sea and Spar Between and
House of Leaves of Grass contain links to web pages which offer information on
how to read the work. In keeping with their watery theme, Montfort and Strickland
write: ‘Sea and Spar Between is a poetry generator, which defines a space of
language populated by a number of stanzas comparable to the number of fish in the
sea, around 225 trillion’ (2010). In keeping with his house theme, Sample writes:
‘The number of stanzas (stanza, from the Italian word for ‘room’) approximates the
number of cells in the human body, around 100 trillion’ (2013). Born of a process
of reading and rereading a finite corpus of print literature, by dint of the volume of
their potential output these variable texts court unreadability. Of Sea and Spar
Between John Cayley asks: ‘If we can only bring some minuscule portion of a huge
virtual linguistic artifact into actual existence for our critical consideration ... does
the work exist at all?’ (Cayley, 2014: 17). These works exist as events, not artifacts.
As such, they refuse close reading as a critical strategy.” (Carpenter 2017)

Sea and Spar Between er et “generative” dikt og “a poetry generator which defines
a space of language populated by a number of stanzas comparable to the number of
fish in the sea, around 225 trillion. Each stanza is indicated by two coordinates, as
with latitude and longitude. They range from 0 : 0 to 14992383 : 14992383. In the
tradition of massive generative poems initiated by Raymond Queneau’s Cent Mille
Milliards de Poémes, this is an impossible text to read completely in a lifetime,
requiring 6,421,232,876.71 years of reading, 24 hours a day, 7 days a week, 365
days a year (with a day of rest on leap years) – if you allot 30 seconds to read each
stanza. Fortunately just as one doesn’t need to navigate the seven seas to appreciate
them, this poem doesn’t need to be apprehended in its entirety to be enjoyed. And
Montfort and Strickland have provided us with an interface that invites exploration
in both serendipitous and precise ways.” (http://iloveepoetry.com/?p=117; lesedato
06.05.15)

“Nick Montfort’s ppg256 poetry generators (2012) are a series of works that
operate within an extreme constraint: the name of the project stands for “perl poetry
generator 256 characters in length.” Each of the poetry generators in the series is a

15

single line of code of exactly 256 characters. In this sense, ppg256 is a form of
conceptual writing. The author’s goal is not so much to write a generator that
produces rich imaginative writing or even poetry that would be published in a
literary magazine but, instead, that can produce readable language in poetic forms:
no small feat in itself, when the number of characters the programmer allows
himself are fewer than those in this sentence. Montfort’s project here is a tour de
force in the computer science conception of “elegance”: the idea that the best code
is that which produces the most substantial desired effect, while utilizing the
minimal computer memory and processing power necessary to do so. […] When
run, it produces output such as this stanza:

the coat
bans no hack
moat no poat
mash of coed
moes at hams

Words and phrases are being produced here in an arranged format that resembles
poetry. There is some rhyme, and some alliteration, recognizable pattern, but the
result is just shy of language that suggests intended meaning. […] Montfort has in
fact published a book, #! (2014a), which includes output from these minimal
generators and others, along with the source code of the programs.” (Rettberg 2019
s. 43-45)

Spine Sonnet (2011) av Jody Zellen er en diktgenerator som lager 14 linjers
sonetter, “an automatic poem generator in the tradition of found poetry that
randomly composes 14 line sonnets derived from an archive of over 2500 art and
architectural theory and criticism book titles.” (http://nt2.uqam.ca/fr/cahiers-
virtuels/article/poetique-de-la-poesie-numerique-pour-ecrans-tactiles; lesedato
19.08.20)

Den danske Tilfældigvis er skærmen blevet blæk “er en poesigenerator laget som en
fysisk installasjon på biblioteket i Roskilde. Opptil tre lesere kan delta samtidig, og
hver leser tar tak i en lærinnbundet og sammenlimt bok som fungerer litt som en
Wii-kontroll. Forfatteren Peter-Clement Woetmann har skrevet mange alternative
verselinjer til diktet, og lesernes bevegelser og valg styrer hvilke linjer som blir del
av “deres” versjon av diktet. […] det blir sinte linjer om de trykker hardt på boken
og vennligere linjer om de har et mykere grep […] Når diktet er ferdig skrives det
ut på en sånn smal lapp som bibliotekene pleier å bruke til kvitteringer, og diktene
postes også automatisk til en egen blogg.” (Jill Walker Rettberg i http://blogg.nrk.
no/bok/2012/11/01/elektronisk-litteratur/; lesedato 11.01.18)

Ranjit Bhatnagars Pentametron (2012) “explains itself by clarifying that “With
algorithms subtle and discrete / I seek iambic writings to retweet”. The bot finds
tweets unintentionally written in iambic (metrical “feet” with two syllables, where

16

every second syllable is stressed) and puts them together in an always-growing
poem. This poem highlights the constantness and constant change in electronic
literature mentioned earlier. The poem is never-ending; the technology generating
the poem makes sure it persistently grows. The poem is constant and accessible in
the sense that the reader can always just open their phone, look under their third
arm, and enter the poem. The poem even sends “push” notifications reminding its
reader to read the latest edition. At the same time, the poem is unceasingly
changing as the bot updates itself. Every time the reader enters the page a
new/same poem is there. Trying to find a section she previously enjoyed can prove
almost impossible in the wealth of new material. This is what causes the poem to
be both constant and interchanging. While some can say that this form of poetry
makes for a lazy reader, because there is no work involved in accessing the poem,
there is an acute need for attentiveness and appreciation. The poem might be gone
forever the moment the hand returns to the pocket, buried under a mountain of new
stanzas. […] The question quickly arises of who the poet really is when dealing
with Twitterbots. Not because of the typical anonymizing style of the internet, but
by the way the medium obscures the difference between human artist, Twitterbot
poet, and poem. […] Is it art when the result is random? Where is the soul in
something literally soulless? How can we measure quality when no human talent is
involved in the actual making the poetry? Is the software programmer a creator of
art in the creation of bots?” (Monsen 2016)

“Hva mangler når vi allerede har Google Bøker og Google Nyheter og Google
Oversetter i tillegg til Google Søk? Google Poesi, selvsagt! En ny blogg ved navnet
googlepoetics.com skaper dikt ut av de rare små setningene som dukker opp når
man skriver inn et ufullstending spørsmål i den populære søkemotoren. En svensk
leser skrev inn “En mi ...” og fikk følgende dikt fra sin dator: “En
midsommarnattsdröm / en miljard / en miljon / en misstänkt liten kanelgiffel.” ”
(Morgenbladet 12.–18. april 2013 s. 43)

I boka Uncreative Writing: Managing Language in the Digital Age (2011)
undersøker Kenneth Goldsmith “a wide range of texts and techniques, including the
use of Google searches to create poetry, the appropriation of courtroom testimony,
and the possibility of robo-poetics […] Writers and artists such as Walter
Benjamin, Gertrude Stein, James Joyce, and Andy Warhol embodied an ethos in
which the construction or conception of a text was just as important as the resultant
text itself. By extending this tradition into the digital realm, uncreative writing
offers new ways of thinking about identity and the making of meaning.” (http://cup.
columbia.edu/book/uncreative-writing/9780231149907; lesedato 12.05.15)

En av den argentinske forfatteren Jorge Luis Borges’ mest kjente noveller heter
“Biblioteket i Babel” (1941) og beskriver prinsippene for en uendelig boksamling.
Borges skildrer i detalj hvordan hans bibliotek er organisert, og forklarer at bøkene
der inneholder alle tenkelige bokstavkombinasjoner, og dermed alle bøker som har
vært skrevet og kan bli skrevet i framtiden. “The librarians search endlessly for any

17

book holding legible meaning, realizing there exists “no personal or world problem
whose eloquent solution did not exist in some hexagon [med bokhyller].” While
they at first rejoice in this realization, they soon become despondent with the
hopelessness of finding anything they deem as meaningful within the endless
shelves. They believe that “nonsense is normal” and “the reasonable (and even
humble and pure coherence) is an almost miraculous exception.” The narrator,
however, disagrees, arguing that everything in the Library contains meaning, that
every word or phrase or sentence, from “The Combed Thunderclap” to “Axaxaxas
mlö” to “o iscfkln vwuhecmnv” can “no doubt be justified in a cryptographical or
allegorical manner.” It is impossible to create a combination of letters “which in
one of its secret tongues do not contain a terrible meaning.” This acts as a metaphor
for the art of reading. Every text, be it a science textbook or a car manual or The
Library of Babel can be interpreted by a reader as having meaning, or in fact
multiple or infinite meanings.” (https://hum11c.omeka.fas.harvard.edu/exhibits/
show/open-readings/the-library-of-babel-and-infin; lesedato 03.09.20)

Amerikaneren Jonathan Basile ønsket å realisere Borges’ imaginære bibliotek i
form av et nettsted som rommer “bøker” med en uendelig mengde bokstav-
kombinasjoner. Basile brukte programmeringsspråket C++, og ga åpningssida for
nettstedet Library of Babel adressen http://libraryofbabel.info/index.html.
Nettstedet genererer tekster i en ufattelig mengde, men det er nesten umulig å finne
tekster i mengden som ligner på vanlige, leselige tekster. Meningsfulle tekster er
forsvinnende få sammenlignet med alle tekstene som bare rommer tilfeldige
bokstavkombinasjoner. Basile har altså lagd en tekstgenerator som eksemplifiserer og
visualiserer Borges’ uendelige boksamling. “The library creates a tantalizing promise
of reason – somewhere in its pages are all the works lost in the burning of the
Library of Alexandria, and every future masterpiece – but drowned out by infinite
pages of nonsense.” (Basile sitert fra https://www.flavorwire.com/515783/
Brooklyn-author-recreates-borges-library-of-babel-as-infinite-website; lesedato
13.05.19)

I og med at det foregår en “økende entropi”, indikerer det at kaos er det mest
sannsynlige for ethvert system, at kaos er den mest naturlige tilstanden i universet
(Archibald, Audet m.fl. 2011 s. 68).

Basile hevder at tekstene i hans Library of Babel er permanente, selv om de er
generert av programvare: “Since I imagine the question will present itself in some
visitors’ minds (a certain amount of distrust of the virtual is inevitable) I’ll head off
any doubts: any text you find in any location of the library will be in the same place
in perpetuity. We do not simply generate and store books as they are requested – in
fact, the storage demands would make that impossible. Every possible permutation
of letters is accessible at this very moment in one of the library’s books, only
awaiting its discovery. We encourage those who find strange concatenations
[sammenføyninger] among the variations of letters to write about their discoveries
in the forum, so future generations may benefit from their research. […] One guy

18

tried to find some meaning in the number of times he could find the names of
various religious figures in the library. On the one hand, all words occur with a
frequency which is based solely on their length, so 1 in every 20 million or so five-
letter combinations will be jesus, while satan has the same distribution. On the
other hand, who’s to say these names and letters aren’t significant in themselves?”
(Basile sitert fra https://www.flavorwire.com/51578 3/brooklyn-author-recreates-
borges-library-of-babel-as-infinite-website; lesedato 13.05.19)

“One user asks Basile if there are any issues with copyright or plagiarism
violations, since an author’s entire work exist in one form or another on the site, as
well as work that haven’t even been written yet. Basile claims the site most likely
falls under fair use, since the work wasn’t penned there and wasn’t generated with
intent for commercial use.” (http://www.relativelyinteresting.com/the-labyrinthine-
library-of-babel/; lesedato 08.09.20).

Litteraturliste (for hele leksikonet): https://www.litteraturogmedieleksikon.no/gallery/litteraturliste.pdf

Alle artiklene i leksikonet er tilgjengelig på https://www.litteraturogmedieleksikon.no

